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Hypotheses
• Volatiles may experience subsurface temperatures that 

could sublimate ice from the base of cold traps 
• Temperature conditions may exist to redeposit and 

concentrate volatiles in predictable parts of subsurface cold 
traps 

• There may be a positive feedback mechanism in which 
increased ice content at the base of volatile stability 
improves the thermal conductivity and thickens volatile 
stability zones 
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Background – Cold Traps 
• The water ice stability zone exists where: 

• regolith surface temperatures are below ~110 K 
• subsurface temperatures are below ~145 K 
• these conditions occur in some polar regions on the Moon 

• They are often found in Permanently Shadowed Regions 
(PSRs) that may host cold traps

• The threshold for defining a cold trap is a sublimation rate 
of 1 kg m-2 Ga-1

(Schorghofer and Aharonson, 2014; Siegler et al., 2011; Zhang and Paige, 2009)
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Illumination and Temperature of a PSR
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Background – Obliquity and TPW
• About 3±1 Ga the Moon was at half its 

current semimajor axis

• The Moon may have experienced a 
Cassini State 1 to 2 transition and 
experienced obliquity as high as 77 
degrees and extended periods at 25-50 
degrees

• The Moon may have experienced true 
polar wander (TPW) with evidence for a 
paleopole at about 3.5 Ga 

• During TPW the planet/moon realigns the 
rotation axis to the maximum principal axis 
of inertia when there is a change in 
internal mass distribution

(Siegler et al., 2016; 2011, Ward 1975)

Figure 7. (Ward, 1975)
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Background – Hydrogen and Ice Depth
• Hydrogen in upper 

meter from epithermal 
neutron data (a. b.)

• Calculated current and 
paleo pole depth to ice 
stability (c. d.)

• Combined current and 
paleo pole ice depths 
match the hydrogen 
content well (e. f.)

(Siegler et al., 2016)
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Background - Topographic Diffusion

• Conceptual setup of a small 
impactor on the slope of a 
larger crater or hillside

• There is a net translation of 
mass in the downslope 
direction 

• Example of craters change in infill thickness 
and slope as a function of time

• equation

• Crater diameter 
and fill thickness

(Fassett et al., 2018; Fassett and Thomson, 2014; Soderblom, 1970)
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Methods-Model Properties

• Thermal conductivity (k) 
• Ice @ 110 K = 5.5 W m-1 K-1
• Regolith = 0.023 W m-1 K-1
• Upper Megaregolith= 0.2 W m-1 K-1
• Lower Megaregolith= 1.0 to 2.0 W m-1 K-1

• Density
• Ice @ 110 K = 932 kg m-3

• Regolith = 1100-1800 kg m-3

• Upper Megaregolith= 1960-2600 kg m-3

• Lower Megaregolith= 2600-2900 kg m-3
(Richardson and Abramov, 2020)

(Keihm and Langseth, 1975; Warren and Rasmussen, 1987; Carnahan et al., 2021)
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Initial Synthetic Crater

Mesh of synthetic crater

160 K160 K

~90 K/km

145 K

110 K

(m)

(K)

160 , Temperature (K) 
0.023 , Thermal Conductivity (W/m/K) 
1800 , Input Density (kg/m^3)
448 , Heat Capacity (J kg-1 K-1) 
2.84e-08 , Thermal Diffusivity (m^2/s)

110 , Temperature (K) 
0.023 , Thermal Conductivity (W/m/K)
1800 , Input Density (kg/m^3)
307 , Heat Capacity (J kg-1 K-1) 
4.15e-08 , Thermal Diffusivity (m^2/s)

(Rücker et al., 2017)

Original water ice 
stability zone

Int. Crater= -181 m 

Thermal diffusivity 
α = 𝑘/𝜌𝑐𝑝

𝑘 is thermal 
conductivity
𝜌 is density
𝑐𝑝 is heat 
capacity

Upper Boundary 
conditions are: 
• 110 K cold trap
• 160 K illuminated
Lower Boundary 
condition is 90 K/km

MegaregolithRegolith

Input physical model
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Filled Synthetic Crater

Input physical model Mesh of synthetic crater

160 K160 K

~90 K/km

110 K

(m)

(K)

145 K

(Rücker et al., 2017)

Water ice 
stability zone

Original water ice 
stability zone

Int. Crater= -181 m 
Filled Crater= -70 m 
Fill Max Thick= 117 m

MegaregolithRegolith Regolith
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~90 K/km
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110 K

145 K

Filled Synthetic Crater
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110 K

(K)

145 K

Sublimation 
Zone

Deposition 
Zone (ice lens)

(Rücker et al., 2017)
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Filled Synthetic Crater with ice

(Rücker et al., 2017)

Water ice 
stability zone

Original water ice 
stability zone

Int. Crater = -181 m 
Filled Crater = -70 m 
Fill Max Thick = 117 m
Ice Rich Layer = 20 m

Input physical model Mesh of synthetic crater

160 K160 K

~90 K/km

110 K

(m)

145 K

Regolith RegolithMegareg. Ice
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Crater - VIPER Mission Area 
(Fassett et al. 2022)

(Fassett et al. 2022)

~100m of fill

Ejecta thickness

At 350 m the ejecta is 
about 1 m thick 

(Fassett et al. 2022)

(Fassett et al., 2022; McGetchin et al., 1973)

Ejecta
1m
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Crater - VIPER Mission Area 
160 K160 K

~90 K/km

110 K

(m)

145 K

Input physical model Mesh of synthetic crater

A. B.

RegolithMegaregolith Megaregolith
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Lunar volatile system timeline – VIPER area example
Impact Flux and
Volcanism 
(Normalized)

Solar Wind

Gardening rate

Sputtering

Obliquity 

True Polar Wander

Crater age

Adjacent Ejecta

Diffusion Fill History
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Conclusion
• The results appear to support potential for 
remobilization and concentration of water ice near 
the base of volatile stability

• Future work will develop and improve:
• Physical crater fill thickness estimates from diffusion 

and ejecta fill
• Volatile concentration scenarios
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